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A theory of differential thermal analysis for a block-type system with spherical 
cells packed with inert material is developed. From the solution of DTA equations, 
a method for determining the reaction order, activation energy and frequency factor 
of the Arrhenius equation is presented. This method is applied to the decomposition 
of magnesite. The agreement between theory and experiment is very good. 

A number of investigators studied the reaction kinetics utilizing differential 
thermal analysis and there are several schemes used for the determination of the 
kinetic parameters from DTA curves. The method presented by Borchardt and 
Daniels [1 ] for a stirred solution system was successful, although somewhat te- 
dious. This method was expanded and modified by Freeman and Carroll [2], Reed, 
et al. [3] and more recently by Reich [4] and Fatu [5]. This method was also used 
with some degree of success by these people for the system other than the stirred 
solution system. However, the required experimental condition that there is no 
temperature gradient in the sample or reference cell was not obtained for the usual 
DTA system. The method of Kissinger [6] appears to be useful, but lacks theoret- 
ical justification. 

In the present paper, a theory of block-type DTA with spherical cells is devel- 
oped. Based on the results obtained, a method for the determination of reaction 
order, activation energy, and frequency factor of the Arrhenius equation is pre- 
sented. The method is then applied to the decomposition reaction of magnesite. 
The spherical cell is chosen mainly because it is easy to approximate experimen- 
tally. This is the first known attempt to determine the kinetic parameters using the 
DTA theory where there is a temperature gradient in the cell. 

Theory 

A precise theory was developed by Akita and Kase [7] for a block-type DTA 
with cells that are infinite cylinders. Since the following derivation of theory 
parallels that of Akita and Kase, their nomenclature is followed here. 

Consider two spherical cells which are packed with inert material and a small 
amount of reactant is mixed in one, the sample cell. If the thermal constants of 
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the cell are virtually insensitive to temperature, the differential equations for 
reference and sample cells are given by 

< _2 < /  
at - K1 t- r + r ar / (1) 

aT. z i c~2Tg_ 2 aT21 QWo d ( W}  
77 - + 7 7 7 , - 1  + a7 Woo 

(2) 

with initial and boundary conditions 

T = T O at t = 0 (3) 

T =  T 0 +  Ct at r = a  (4) 

Here T is the temperature, r is the radial coordinate, K is the thermal diffusivity 
of packed material, Q is the heat of reaction per weight, C is the specific heat, 
W 0 is the original weight of reactant, W2 is the total weight of sample cell, W is the 
weight of reacted reactant, t is the time, r is the heating rate, and a is the radius 
of the cell. The subscripts 1 and 2 refer to the reference and sample cell, respec- 
tively. The initial temperature, T o , is usually regarded as the temperature at which 
the DTA curve departs from the base line. 

We assume that the reaction rate is given by the Arrhenius equation 

k = Z exp - (5) 

where k is the reaction rate, Z is the frequency factor, E is the activation energy, 
and R is the gas constant. The reaction rate term of Eq. (2) becomes 

QW o d W QW~ 1 -  k (6) 
CzW2 dt C2W2 Woo 

where n is the order of reaction. 
The temperature change in the sample cell as a result of the reaction is very 

small with respect to the heating temperature and the temperature rise on the cell 
surface up to peak temperature is much smaller than T o . Thus we have 

T2(To - Ct) -~ (To + q)t)(To - Ct) ~- Tg (7) 

We now integrate Eq. (6) from t = 0 to t = t after substituting Eq. (7) into 
Eq. (5) and the resulting equation into Eq. (6). Then we have, after some algebraic 
manipulation, 

C2w~QW~ d f W _ [ 1X_ ]n/(1-n) I - ~  = 6, exp (at) 1 - exp (at)[ (8) 

where 

X ~ - -  + 1 (9) 
1 - h A  
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8 n =  C 2 w 2 A  1 + (1 - n )  (10) 

= E4~/RTg (11) 

A = Z e x p  - (12) 

Fo r  the case where n = 1, we have 

Q W  o d W = 61exp(c~t)exp - - - e x p ( ~ t )  (13) 
GW2 dt 

where 

31 - - -  A exp (14) 
G w 2  

N o w  we make the following t ransformat ion  

5n~X ~z [[ X- 1 _ l~/O--n) ( ~_1 ~/(~-~) ] O ~ =  T ~ -  T o +  (1 - n )  1 - exp (15) . ~ (~t) 1 - 1 -  

and in the case when n = 1 

O.~ = T2 + To - -~- exp - exp (c~t) + ~ -  exp - (16) 

We introduce the new variable 

p n ( / )  __ 6n X (1 - n)  ( -  1)l F ~ 1 
- -  X~  (17)  

I! F 1 - n  

and again when n = 1, 

Plq)  = A l~ (18) 

By introducing the assumption that  [exp (~t)/x I < 1 for the nth order  reaction, 
Eqs (2), (3), and (4) become 

eo2  (e2o2  2 0 o ~ ]  
- K 2 t s r ~ - r 2  + r Or) (19) 

O = 0 a t  t = 0 (20)  

O = qSt + ~ P n ( 1 ) [ e x p ( h t )  - 1] at r = a (21) 
l=la 

2 J. Thermal Anat. 4, 1972 



264 JAE HO BAE: DETERMINATION OF KINETIC PARAMETERS 

It should be remembered that Eq. (21) for first order will have PI(/) in place of 
Pn(l) and all changes should be made accordingly. 

As the transformed DTA equations are identical for first and nth order reac- 
tions, for simplicity we shall solve the equation for first order reaction. The 
problem now reduces to that of the heat conduction in a sphere with zero initial 
temperature and changing surface temperature with time. The solution is [8] 

02 = - -  exp a2 sin - -  ( -  mz~K2) ( -  
ar m=l  

t 
"( K2 m2 7~2 )]"/ 

f exp [ ~ ) ~(2) 62 (22) 

0 

with 

4(2) = 02 + ~ Pl(l) [exp (/c~2) - 1] (23) 
1=0 

The integration is very tedious but straightforward. The solution for the reference 
cell can be found by setting Pl(1) = 0 and the DTA curve is the temperature differ- 
ence between the sample and reference cells. Furthermore, the temperature at the 
center of the cells can be found by taking the limit of the solution as r approaches 
zero. 

Now we assume that/(1 is the same as K2. This should be reasonable when a 
small amount of reactant is mixed with inert materials in the cell. We further 
assume the following, which is also reasonable for most experimental conditions; 
i.e., when reasonable values are substituted, the second term in the parenthesis 
is much smaller than unity. 

( lc~a2 ]-1 ( l~a2 ) (24) 
1 + K2 m z ~2 ] ~- 1 K2 m 2 ~2 

Finally we obtain 

Z T = ~ Pl(l) exp (lc~t). lc~ [[r~-a2],=o6K2, 

{ f2m27c2t I m---aZC-rl (--1)m ~pl(1).l~t (25) 
2aa ~ exp - -  a2 sin rn 3 

K 27~ 3 F m=l  l=O 

However, the second term in Eq. (25) is numerically insignificant compared with 
the first term except when it is near zero. Therefore, we can safely ignore the second 
term 

-a2  ~ - a  2 QW o d (  W I (26) 
ATr ~ 6K~2 l=o Pl(1)lc~ " exp (lc~t) = -6K~ . C.~Wz dt N o 

For nth order reaction, Eq. (8) should be combined into Eq. (26). 
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The DTA curve can be generated numerically by Eq. (26) and accordingly the 
effect of variables on the DTA curve can be easily investigated. The behavior of 
the curve to the changes in heating rate, order of reaction, activation energy, and 
frequency factor followed the same trends as reported in the literature [3, 7]. 

Determination of kinetic parameters 

Since the DTA curve is obtained in Eq. (26), we can relate this equation to 
experimental quantities to determine the kinetic parameters. We shall study the 
first order and nth order reactions, separately. 

First order reaction 

At the maximum of DTA curve, we have the relationships 

where subscript m refers to the maximum. Then the height of the curve is 

A T m -  6/s C2W2 ( e  ~ .exp (28) 

1 
At time of tl/2m = --~ tm we have 

a2 QW~ (A �9 e)l/2 exp (29) 
AT1/2m- 6K2 C2W2 

Thus, we have 

ATm a 2 OW0 (30) 

Once A is known, E and Z can be easily obtained from Eqs (27) and (i2). 
However, since the thermal properties of the cell and packing in the last bracket 

of Eq. (30) are not usually known, we may need two experiments with different 
heating rates. Then, from Eq. (27) we obtain the following relationship: 

RT~ In (r (31) 
E = (r __ (q~tm)II (~b)n 

where the subscripts outside the parenthesis refer to the different experimental 
runs. 

nth order reaction 

At the maximum of DTA curve, we obtain 

(32) 
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and from this we get 
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aZ QWo JAn n ]~1(~-~) 
ATm = 6K2 -C~W~. . c~ --~ exp (ca) (33) 

From Eqs (8) and (26) we obtain the following condition for the end of the DTA 
curve: 

J( = exp (~tr) (34) 

w h e r e  t f  is the time of the completion of DTA curve. This leads to the relationship 

n = 1 - exp [C((t m - -  if) l (35) 

If we take any time, t~, and the corresponding differential temperature, ATe, 
then, from Eqs (26), (32) and (33) we have 

[ e~tf--e~tm I (ATm e~ta I 
n l  - n l n  e ~ ' ~ Z ~  = I n  AT~ e~t"~ l (36) 

Thus, we have two unknowns, n and E, and two equations (35) and (36). Once 
these values are determined the value of Z can be readily calculated. Note here 
that only a single DTA curve is required in this case. 

Experimental 

To verify the methods for the determination of kinetic parameters, the decom- 
position reaction of magnesite was studied. 

Since it is difficult to build spherical cells, we used cylindrical cells of equal 
height and diameter. The discrepancy between theory and this experimental setup 
would be small, especially at the center of the cell where the chromel-alumel 
thermocouples are placed. Two cylindrical cells of 0.95 cm diameter were drilled 
in the metal body and close fitting plugs were used to make the cell of desired 
shape. The cells were filled with Norton Alundum whose weight was 1155 mg 
in each cell. The cells were not rigidly sealed so that there is no pressure in the cell. 

The magnesite* was used as a sample. An amount of 228 mg was mixed with 
Alundum in the sample cell and the whole DTA block was placed inside a furnace. 

Results and discussion 

Three different heating rates were employed in the experiment. The results are 
summarized in Table 1 where the heating rate, time, and corresponding differential 
temperature are given. 

* O b t a i n e d  f r o m  F i s c h e r  S c i e n t i f i c  C o .  
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The DTA peak started at 350 ~ which was taken to be T 0. Using Eqs (35) and 
(36) the reaction order and activation energy were found for each run. By Eqs 
(12) and (32) the value of the frequency factor was also calculated. These values 
are listed in Table 2. The result of Run II gives values somewhat different from 
those of other runs. This may be due to experimental uncertainties such as the 

Table 1 

Experimental results 

R u n  ~ ,  ~  t i n ,  r a in  t a , m i n  tf , r a in  ATm, /2V ATa, pV  

I 

II 
III 

1 . 7 5  

3.49 
5.56 

34.3 
20.2 
14.0 

22.9 
13.5 
9.3 

47.0 
26.8 
18.2 

12.9 
32.0 
44.7 

5.2 
12.0 
12.1 

uneven mixing of sample with inert material in the cell. This kind of small varia- 
tion is expected. 

V[. 

/ 

350 40O 450 
Temperature j ~ 

Fig. l. Comparison between theory and experiment on the decomposition of magnesite; 
- -  experimental, - - -  calculated 
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Tab le  2 

K ine t i c  p a r a m e t e r s  o b t a i n e d  

Run n E, kcal/mole log Z 

I 
II 

III 

0.83 
0.81 
0.84 

61.5 
56.0 
60.6 

18.7 
16.9 
18.3 

With the values in Table 2 the DTA curves were generated and compared 
with experiment in Fig. 1. Since the value of 

a 2 Q W  o 

61s C2W2 

is not known and this value affects only the magnitude or height of the DTA 
curve, the calculated curve was forced to fit the experiment at the maximum peak 
height. The agreement between theory and experiment is very good in spite of  
those assumptions involved in the derivation of the theory. 

A review of  the literature on the decomposition of magnesite shows conflicting 
results on the decomposition temperature. It  is listed to be 350 ~ in several places 
[9, 10]. This temperature corresponds well with our observed value. However, 
it is also reported that magnesite decomposes at about 550 ~ with an activation 
energy of about  36 kcal/mole and a reaction order of  unity in one case [11] and 
about  0.58 on other occasions [6, 12]. Unfortunately, there are no data on the 
decomposition at 350 ~ . The present data on reaction rate and activation energy 
are significantly different from those reported. 

Conclusion 

The agreement between theory and experiment shows that the assumptions 
made in the derivation of theory are reasonable. Furthermore, the spherical cell 
in the theory may be approximated experimentally by a cylindrical cell of  equal 
height and diameter. The method presented here for the determination of kinetic 
parameters f rom the DTA curve is a consequence of the theory and is reliable 
as shown in the example of  magnesite decomposition. 
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RI~SUMI~ -- On d6veloppe une th6orie de l 'analyse thermique diff6rentielle pour un syst~me 
de type "b loc"  avec cellules sph6riques remplies d 'une substance inerte. On pr6sente une 
m6thode pour  d6terminer l 'ordre de la r6action, l '6nergie d 'act ivation et le facteur de fr6quence 
de l '6quation d 'Arrhenius  b, part ir  de la solution des 6quations trouv6es pour  I 'ATD. La 
m~thode est appliqu6e h la d6composition de la magn6site. L 'accord entre la th6orie et l'ex- 
p6rience est tr~s bon. 

ZUSAMMENFASSUNG - -  Eine Theorie der Differentialthermoanalyse fiir ein Blocksystem yon 
mit Inertstoff  geffillten sph/irischen Zellen wurde entwickelt. Die Gleichungen ermSglichen 
die Best immung yon Reaktionsordnung,  Aktivierungsenergie und Frequenzfaktor  der 
Arrheniusschen Gleichung. Die Methode wurde bei der Zersetzung yon Magnesit angewandt 
und gute Obereinst immung zwischen den theoretischen Erw~gungen und den praktischen 
Resultaten erzielt. 

Pe3~oMe - -  Pa3pa6oTana Teopnfl ~I4qbdpepeH~aY~bHOrO TepMn~ecKoro aHasta3a )I~q~ CHCTeMbI 
6JIOKOBOI'O Tfma c Illap!,I/:OBblMtI ~t'te~KaMH, HaI/OYll-IeHrtblMI~I HtIepTHblM BeuleCTBOM. Ha ocno- 
Bannn pemeHna ypaBnem, i~i ~ T A  ~art MeTO~ onpe~eaeHart rlop~t~Ka pearttrm, aneprnn arTnBa- 
Ur~n n ~baKTopa qaCTOWb: ypaBHeHHa Appennyca. MeTo~ l~cnoal,3oBaI: npa  rlccae~oBaa~tri pacna- 
;:a Marne3nTa. Ha6y~o~aeTc~ oqenb xopomee coana;IertHe Mez(~y Teopnel~ 1~ 3KCHepHMeHTOM. 
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